
PlayStation Mod Chip
Mike Aung

Matthew Gay
E 158

April 11, 2001

Introduction
The Sony PlayStation Computer Entertainment System is a video game system marketed all over
the world by Sony. For marketing and sales purposes, there are three different versions of the
system sold in separate geographical regions: Japan, Europe, and the U.S. Unfortunately, the
games are also created in different versions, so that a game purchased in Japan cannot be played
on a PlayStation purchased in the U.S. This is done for marketing purposes as well as to allow
games to be priced differently for different regions. To work around this problem, a gray market
of “mod chips” has developed. A mod chip is a device that is soldered onto the PlayStation
motherboard in such a way that the PlayStation will play games from any of the three regions
regardless of its country of origin. These mod chips also allow the PlayStation to play pirated
games that have been copied using a CD-ROM burner.

Most PlayStation owners obtain mod chips through commercial retailers who install the chips for
you. It is also possible to construct your own mod chip, and there are sites on the web describing
the operation of these chips. Most of these chips use some sort of simple microprocessor
programmed to act like a mod chip. A good example of this can be found at http://elm-
chan.org/reports/psm/ where they use an Atmel microcontroller as the mod chip. For this
project, we constructed a functioning mod chip using Electric to lay out the chip.

Functional Overview
When a game disc is inserted into the PlayStation, the machine checks for a region code on the
disc during the boot sequence. A mod chip tricks the PlayStation into believing that any game is
an in-region game by blocking the region code from the CD, and replacing it with the correct
region code. The mod chip does this by outputting all of the region codes one after another.
Originally the region codes were output as long as the machine was turned on, but game
developers figured this out and started checking to see if the region codes were being output at
times other than start-up, and then stopping the game. To counter this, “stealth” mod chips were
released, which stopped outputting the region codes after a set period of time, or after a few other
events, which implied that the game had already checked the region code. To make our chip as
versatile as possible, and to add some challenge to the project, we also plan to make our chip a
stealth mod chip.

The codes that are output consist of: SCEI (Japan), SCEA (America), SCEE (Europe). These
codes are output in ASCII one after another with a 72ms delay in between codes until one of the
following conditions are met:
• Timing out – after 26.5 seconds, the region codes are no longer sent
• Memory card access – since most games access the memory card before checking for a mod

chip
• Cover open – when the cover of the PlayStation is open, the sending of the region codes is

suspended
• Reset – when the reset button is released, the chip starts over in sending the region codes.
The reset, memory check, and cover open signals are all supplied by the PlayStation, so
all we have to do is pull them off of the board and supply them to the chip.

In hex, the bitstream out of the chip should be:

Playstation Mod Chip Matt Gay
Mike Aung

3

9A93D2BA5B4 (Japan)
9A93D2BA574 (Europe)
9A93D2BA5F4 (USA)
…

This translates to:
1001 1010 1001 0011 1101 0010 1011 1010 0101 1011 0100
1001 1010 1001 0011 1101 0010 1011 1010 0101 0111 0100
1001 1010 1001 0011 1101 0010 1011 1010 0101 1111 0100
…

There should be a 72ms delay between each code, and each bit is asserted for 4 ms.

After struggling for a while, we decided that we were unable to implement the chip in a way that
cycled through the 3 different countries on its own. Instead, we have a two bit input
corresponding to the country. This doesn’t really reduce the functionality of the mod chip,
because for any given PlayStation the chip only needs to output one country code. So, when the
chip is installed in a PlayStation, the con_code inputs can be hard-wired to the appropriate
values. This changes the expected output of the chip to (for Japan):

1001 1010 1001 0011 1101 0010 1011 1010 0101 1011 0100
…

Chip Pinout
Since we don’t plan for our chip to be fabricated, we don’t have it attached to a pad frame.
However, we do have the following inputs and outputs:

phi1 Clock Phase 1, 250 Hz clock
phi1_b Clock Not phi1
phi2 Clock Phase 2, 250 Hz clock
phi2_b Clock Not phi2
reset Input Reset signal from PlayStation (active high)
cover Input Cover open signal from PlayStation (active

high)
mem Input Memory access signal from PlayStation

(active high)
con_code0 Input
con_code1 Input

These are used to tell the chip which version
PlayStation it is installed in (00 = Europe, 01
= Japan, 10 = USA).

mask Output Blocks the real data from the disk by driving
it low.

fake Output The fake data provided by the chip to the
PlayStation

Chip Floorplan
Below is the floorplan of our final design. It manages to fit nicely into the 2000λ x 2000λ space
available on a Tiny chip. We were pleasantly surprised to discover that our original estimates for

Playstation Mod Chip Matt Gay
Mike Aung

4

the dimensions of the various facets were fairly accurate. All of the facets turned out to be close
to (but not larger than) the estimated size.

Area and Time Data
As we worked on the project, we kept track of the time required for each facet, as well as the
area of each facet. This data is shown below:

Cell Time (hrs) Width(λ) Height(λ)Area(λ2)
Top 4 996 1918.5 1,910,826

Mask 2 266.375 709 188,860
Timeout 2 293.5 1153 338,406

Code_Gen 6 681 1592.5 1,084,493
bits1_36 2.5 529.25 537 284,207
36bits 5 347 537 186,339

bits_F7B 3 420 175 73,500
bits_4 2 249.5 174.5 43,538
wait 2 307.5 441 135,608

con_code 2 240.5 174 41,847
2-phaselatch 1 72.5 87 6,308
half_adder 1 106.5 87 9,266

counter 4 180.25 87 15,682
counter_2 1 191 174 33,234
counter_5 1 193.5 441 85,334
counter_6 1 188.5 537 101,225

Playstation Mod Chip Matt Gay
Mike Aung

5

counter_8 1 190.5 709 135,065
counter_13 1 190.5 1153 219,647

tri 0.25 30.5 87 2,654
mux2 0.25 52 87 4,524
mux4 0.25 183 88 16,104

inv 0.25 25 87 2,175
nand2 0.25 33 87 2,871

std_nand3 0.25 47 87 4,089
and2 0.25 52 87 4,524
and3 0.25 64 87 5,568
and4 0.25 83.5 87 7,265
and5 1 114 88 10,032
and6 0.25 110 87 9,570
xor2 5 60 87 5,220

Std_nor2 0.25 34.5 87 3,002
Std_nor3 0.25 41 87 3,567

or2 0.25 52 87 4,524
or3 0.25 57.25 87 4,981
or4 0.25 83 87 7,221
or6 0.25 98 87 8,526

totals: 51.5 4,999,795

The time spent on the design seemed to be spent mostly on drawing and debugging layouts. At
first a significant amount of time was spent on getting layouts to pas NCC, but after a while, we
developed a systematic approach to fixing NCC errors, and became more efficient.

Simulation Results
We got the top level schematic to simulate with some success. As long as the country code is 00
(Europe), the simulation works fine. However, when the country code is switched, the fake
output goes permanently high. This is because of a poorly designed reset in the bits_F7B block.
When the block is reset, the counters output 00. This means that the fake output of the block
outputs whatever the first bit of that country code is. In the case of Europe, the output is 0111,
so the first bit output is 0, which is not a problem. For Japan and USA however, the outputs are
1011 and 111 respectively. In these cases, the first output bit is 1. This means that when the
chip is reset, the bits_F7B block outputs 1 while it’s waiting to start counting. This overrides the
outputs of all the other blocks. This can be fixed by taking the fake output and “anding” it with
the cin input. That way, the output of the block will be zero unless it’s actually in the process of
counting. Apart from the difficulty with the country bits, each of the individual parts of the chip
do simulate as we expected.

Playstation Mod Chip Matt Gay
Mike Aung

6

The simulation of the top layer (shown above) demonstrates that it is able to output the necessary
codes with the appropriate 72 ms wait in between (note that the plot is not to scale). Then, the
output drops to zero as soon as the mem signal is driven high. This is what we expect the chip to
do.

Playstation Mod Chip Matt Gay
Mike Aung

7

The mask block outputs the signal that covers up the real data from the PlayStation. This can be
seen above as the mask output drops to low, covering up the real data, after a start-up time.

The timeout block would be simulated to demonstrate that the chip stops sending data after 26.5
seconds, however, IRSIM has a time limit, and it is impossible to simulate the block for enough
clock cycles.

Playstation Mod Chip Matt Gay
Mike Aung

8

Verification Results
For each chip facet, we ran a set of tests to make sure that our layouts were correct. First, we ran
a Design Rules Check (DRC) to make sure that we hadn’t violated any of the desisign rules.
Next we ran an Electrical Rules Check (ERC). This checked that all of the wells were
sufficiently grounded or powered. Finally we ran a Network Compare Check (NCC) to compare
the schematic to the layout. There were three different versions of Network compare: check
current facets only, flatten hierarchy, and recursively check subfacets. We ran all three versions
for each facet, and made sure that it passed each. Once DRC, ERC, and NCC had been passed,
we were reasonably certain that the layout could be manufactured and matched the schematics.
The chart below shows each facet and its status on the tests (everything passed):

Cell Schematic Layout DRC ERC NCC
top X X X X X

mask X X X X X
timeout X X X X X

Code_Gen X X X X X
bits1_36 X X X X X
36bits X X X X X

bits_F7B X X X X X
bits_4 X X X X X
wait X X X X X

con_code X X X X X
2-phaselatch X X X X X
half_adder X X X X X

counter X X X X X
counter_2 X X X X X
counter_5 X X X X X
counter_6 X X X X X
counter_8 X X X X X
counter_13 X X X X X

tri X X X X X
mux2 X X X X X
mux4 X X X X X

inv X X X X X
nand2 X X X X X
and2 X X X X X
and3 X X X X X
and4 X X X X X
and5 X X X X X
and6 X X X X X
xor2 X X X X X
nor2 X X X X X
nor3 X X X X X
or2 X X X X X
or3 X X X X X

Playstation Mod Chip Matt Gay
Mike Aung

9

or4 X X X X X
or6 X X X X X

Test Plan
The obvious way to test this chip is to plug it into a PlayStation. However, we are very hesitant
to actually do this. There are a few reasons we are concerned. First of all, installing the chip
would involve soldering directly to the machine, and we really don’t want to risk a $100 piece of
equipment. The other reason that we are hesitant to plug into the PlayStation is that even good
mod chips aren’t perfect. Some games work well with some mod chips, so if the chip failed to
work, it would be hard to tell if the failure was due to the mod chip, or due to some unique
feature of the games we were using. Also, different versions of the PlayStation require slightly
different versions of the mod chip.

Rather than testing the chip on an actual PlayStation, we will test it using a logic analyzer. The
chip should be plugged into the appropriate clock signals, the outputs mask and fake will be
connected to the logic analyzer. The test sequence will be as follows:

1. Power up the chip with reset high, and all other inputs low
2. Set reset low
3. Check that mask goes low after 900 ms (225 clock cycles)
4. Watch the bitstream out of fake, and check that it is as described in the functional

overview of the chip (make certain that it is repeating itself).
5. Do one of the following:

a. Wait 26.5 s (6625 clock cycles) and check that the fake output returns to low
b. Drive the mem input high and check the fake output immediately drops to low
c. Drive the cover input high and check the fake output immediately drops to low

6. Drive reset high for a few cycles (the time doesn’t matter since in actual usage, no user
can push reset in less than 4 ms), then return to step 2, selecting a different option at step
5.

7. Finally, leave the chip on for a few minutes to ensure that the fake output stays low rather
than returning high, and to check for any other unexpected behavior.

This should test all the functions of the chip. If satisfied that the chip is behaving as expected, it
can be plugged into an actual PlayStation. The wiring diagrams for mod chips are easily found
on the Internet. Before actually plugging the chip in, it would be wise to check the signals
coming to the various inputs (mem, cover, and reset). There is some ambiguity as to whether
they are active high or active low. The chip is expecting active high inputs, so if the PlayStation
is providing active low inputs, it may be necessary to run them through inverters.

Schematics
top

Playstation Mod Chip Matt Gay
Mike Aung

10

mask

timeout

Code_Gen

Playstation Mod Chip Matt Gay
Mike Aung

11

bits1_36

36bits

bits_F7B

Playstation Mod Chip Matt Gay
Mike Aung

12

bits_4

wait

2-phaselatch

Playstation Mod Chip Matt Gay
Mike Aung

13

half_adder

counter

counter_2

Playstation Mod Chip Matt Gay
Mike Aung

14

counter_5

The schematics for counter_6, counter_8, and counter_13 are not shown due to their repetitive
nature, but are identical in arrangement to counter_5.

tri

Playstation Mod Chip Matt Gay
Mike Aung

15

mux2

mux4

inv

Playstation Mod Chip Matt Gay
Mike Aung

16

nand2

std_nand3

and2

and3

Playstation Mod Chip Matt Gay
Mike Aung

17

and4

and5

and6

Playstation Mod Chip Matt Gay
Mike Aung

18

xor2

std_nor2

std_nor3

or2

Playstation Mod Chip Matt Gay
Mike Aung

19

or3

or4

or6

Playstation Mod Chip Matt Gay
Mike Aung

20

Layout
top

Playstation Mod Chip Matt Gay
Mike Aung

21

mask

Playstation Mod Chip Matt Gay
Mike Aung

22

timeout

Playstation Mod Chip Matt Gay
Mike Aung

23

Code_Gen

Playstation Mod Chip Matt Gay
Mike Aung

24

bits1_36

Playstation Mod Chip Matt Gay
Mike Aung

25

36bits

bits_F7B

Playstation Mod Chip Matt Gay
Mike Aung

26

bits_4

Playstation Mod Chip Matt Gay
Mike Aung

27

wait

Playstation Mod Chip Matt Gay
Mike Aung

28

2-phaselatch

half_adder

counter

Playstation Mod Chip Matt Gay
Mike Aung

29

counter_2

Playstation Mod Chip Matt Gay
Mike Aung

30

counter_5

The layouts for counter_6, counter_8, and counter_13 are not shown due to their repetitive
nature, but are identical in arrangement to counter_5.

Playstation Mod Chip Matt Gay
Mike Aung

31

tri

mux2

mux4

Playstation Mod Chip Matt Gay
Mike Aung

32

inv

nand2

std_nand3

Playstation Mod Chip Matt Gay
Mike Aung

33

and2

and3

and4

Playstation Mod Chip Matt Gay
Mike Aung

34

and5

and6

Playstation Mod Chip Matt Gay
Mike Aung

35

xor2

std_nor2

Playstation Mod Chip Matt Gay
Mike Aung

36

std_nor3

Playstation Mod Chip Matt Gay
Mike Aung

37

or2

or3

Playstation Mod Chip Matt Gay
Mike Aung

38

or4

or6

